

Mathematics in Education and Industry

www.mymathscloud.com

MEI STRUCTURED MATHEMATICS

STATISTICS 1, S1

Practice Paper S1-A

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You **may** use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

Section A (36 marks)

www.mymathscloud.com 1 The box-and-whisker plot in Fig. 1 illustrates the scores, out of 80, of 120 people in a diving competition.

[4]

Draw a cumulative frequency graph to illustrate these data.

2 100 people attend a music festival. They are asked which, if any, of the instruments piano, cello, violin they play.

Their answers are illustrated in Fig. 2.

A person is chosen at random from those attending the festival and asked which of the three instruments he or she plays.

Find the probability that this person plays

- (i) the piano,
- (ii) exactly one of the other instruments given that he or she plays the piano. [4]

www.nymathscloud.com 3 In a year group of three classes the distribution of sexes is given in the table below.

	Class 1	Class 2	Class 3
Males	10	11	9
Females	15	9	9

Three students are selected, one from each class, at random.

Find the probability that

- (i) all 3 are male, [2]
- only one is male. (ii)
- 4 A train company runs a non-stop service from Oxbridge to Camford. The numbers of passengers on the 07:30 service on 20 weekdays were as follows.

184	193	195	189	173
175	171	178	174	163
184	162	171	154	199
217	187	169	183	186

- (i) Calculate the median and the inter-quartile range.
- (ii) Using the inter-quartile range, show that there is just one outlier. Find the effect of its removal on the median and the inter-quartile range. [4]
- 5 A random sample of cyclists were asked how many days they had used their bicycles in the last week. The results are given in the following table.

Number of days (<i>x</i>)	0	1	2	3	4	5	6	7
Frequency (f)	15	10	9	5	7	24	8	2

- Illustrate the distribution using a suitable diagram and describe its shape. (i)
- (ii) Calculate the mean and the standard deviation, s, of the data. Give your answers to 4 decimal places. [3]
- (iii) As a reward for taking part in the survey, the cyclists' names are entered for a draw. There are 3 identical prizes. In how many ways can the 3 winners be chosen ? [2]

[3]

[3]

[3]

6 In one turn of the game of *Polopoly* a player throws three ordinary dice, the score being the largest of the numbers appearing face up. The score, X, is given by the probability distribution given in the following table.

r	1	2	3	4	5	6
$\mathbf{P}(X=r)$	$\frac{1}{216}$	$\frac{7}{216}$	$\frac{19}{216}$	$\frac{37}{216}$	$\frac{61}{216}$	<u>91</u> 216

(i) Find E(X) and Var(X).

(ii) Find the probability that the player will score a total of exactly 10 in two turns. [4]

[4]

[5]

Section B (36 marks)

7 A survey is conducted to find which type of property people live in and whether the property is owned or rented by its occupier. The results for a particular region of the country are as follows.

Type of Property	Proportion of	Proportion of properties			
	each type	Owned	Rented		
Detached / semi-detached	45%	75%	25%		
Terraced house	35% 50%		50%		
Flat / bedsit	20%	35%	65%		

A property is chosen at random.

(i)	Construct a tree diagram to represent the information in the table.	[3]
(ii)	Find the probability that the property is owned.	[3]
(iii)	Find the probability that the property is a terraced house or rented.	[4]
(iv)	Given that the property is owned, calculate the probability that it is a terraced house.	[3]

I wo properties are now chosen at random.

- (v) Find the probability that they are
 - (A) of the same type,
 - (*B*) of different types.

- 8 Phil likes rifle shooting at an amusement arcade. He reckons that he can hit the target on 3 out of 4 shots on average. Each "go" at the amusement arcade consists of 10 independent shots at a moving target. A prize is awarded if at least 9 shots hit the target.
 - (i) Show that the probability that Phil wins a prize in one "go" is 0.244, correct to 3 significant figures.
 - (ii) Phil has 3 "goes". Find the probability that he wins
 - (A) exactly one prize,
 - (B) at least one prize.
 - (iii) How many "goes" does Phil need to have so that the probability of winning at least one prize is more than 90% ? [4]

Val is less experienced at rifle shooting. She thinks that she has an even chance of hitting the target with one shot. Phil thinks that she has a better chance of hitting the target. He conducts a hypothesis test at the 10% significance level by getting Val to have 10 shots at the target.

- (iv) Write down suitable hypotheses for this test in terms of *p*, the probability that Val hits the target, giving a reason for your alternative hypothesis. [3]
- (v) Find the least number of times Val should hit the target to suggest that Phil is correct.

[2]

[6]

				my service
				T. My Marker
Qu		Answer	Mark	Comment Strange
Sect	ion A			.04d.C
1			G1	Correctly scaled axes, with attempted ogive.
		en 190	G1	Maximum & minimum points plotted
		15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	G1	Median plotted
		0 1 30 35 40 45 50 55 60 65 70 75 80 ×	4	Quartiles plotted
				<i>Curve or line</i> <i>segments accepted</i>
2	(i)	$P(\text{plays piano}) = \frac{45}{100} \text{ or } 0.45$	M1 A1 2	For (30 + 8 + 5 + 2)
	(ii)	P(plays one other instrument plays piano) = $\frac{10}{45} = \frac{2}{9}$	M1 A1 2	For $\frac{n}{45}$
3	(i)	P(all 3 male) = $\frac{10}{25} \times \frac{11}{20} \times \frac{9}{18} = \frac{11}{100} \text{ or } 0.11$	M1 A1 2	Product of 3 terms
	(ii)	P(1 male) = $\frac{10}{25} \times \frac{9}{20} \times \frac{9}{18} + \frac{15}{25} \times \frac{11}{20} \times \frac{9}{18} + \frac{15}{25} \times \frac{9}{20} \times \frac{9}{18}$	M1 M1	Product of 3 terms Digits correct on top of at least one
		$=\frac{39}{100} or 0.39$	A1 3	
4	(i)	Median = 180.5	B1	For median
		Inter-quartile range = $188 - 171 = 17$ [$or = 188.5 - 171 = 17.5$]	M1 A1 3	For sensible attempt at finding IQR
	(ii)	$Q_1 - 1.5 \times IQR = 171 - 1.5 \times 17 = 145.5$	E1	For showing 217 is >
	()	$Q_3 + 1.5 \times IQR = 188 + 1.5 \times 17 = 213.5$	E1	$1.5 \times IQR$ above Q_3 For showing there are
		Hence only data item outside the interval [145.5, 213.5] is 217.		no values $< 1.5 \times IQR$ below Q ₁
		If 217 is removed, median drops to 178	B1	For effect on median
		IQR becomes $187 - 171 = 16$ or $187.5 - 171 = 16.5$	B1	For effect on IQR
		or $186.25 - 170.5 = 15.75$	4	

				mm m
				Mynath sets
5	(i)			ISCIOUD.
5	(1)	30		Com
		25		
		20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G1	For linear scales on both axes
		⁴ 10 5	G1	For heights of lines of vertical line chart
		0 1 2 3 4 5 6 7 8 ×	D1	For commont
		Distribution is bimodal	3	For comment
	(ii)	Mean = $\frac{253}{80}$ = 3.1625 days (to 4 d.p.)	B1	For mean
		Standard deviation = $\sqrt{\frac{1189 - 80 \times 3.1625^2}{79}}$	M1	For variance
		$= \sqrt{4.922626582} = 2.2187 \text{ (to 4 d.p.)}$	A1 3	
	(iii)	Number of ways of choosing the 3 winners = ${}^{80}C_3 = 82160$	M1 A1 2	For ^{<i>n</i>} C ₃
6	(i)	$E(X) = \Sigma r P(X = r) = \frac{1}{216} (1 \times 1 + 2 \times 7 + + 6 \times 91)$	M1	For $\Sigma r P(X = r)$
		$=\frac{1071}{216}$ = 4.96 (to 3 s.f.)	A1	
		$\Sigma r^2 \mathbf{P}(X=r) = \frac{1}{216} (12 \times 1 + 22 \times 7 + \dots + 62 \times 91)$		
		$=\frac{5593}{216}$	M1	For $\Sigma r^2 P(X = r)$
		\Rightarrow Var(X) = $\frac{5593}{216} - \left(\frac{1071}{216}\right)^2 = 1.31$ (to 3 s.f.)	A1 4	
	(ii)	P(score exactly 10 in 2 turns)	M1	For ≥ 2 pairs soi
		= P(4, 6) + P(5, 5) + P(6, 4)	IVII	correct probabilities
		$= \frac{37}{216} \times \frac{91}{216} + \frac{61}{216} \times \frac{61}{216} + \frac{91}{216} \times \frac{37}{216}$	M1	For sum of 3 correct products
		= 0.224 (to 3 s.f.)	A1 4	

Total = 36

			m
			N. Mymar Ma
Qu	Answer	Mark	Comment
Section B			
7 (1)	Detached or semi-d 0.45 0.75 Owned 0.75 Owned 0.25 Rented	B1	For overall structure
	0.35 Terraced 0.50 Owned	B1	For 1 st set branches
	0.50 Rented 0.20 Flat or bedsit 0.65 Rented	B1	For 2 nd set branches
(ii)	P(property is owned) = $0.45 \times 0.75 + 0.35 \times 0.50 + 0.20 \times 0.35$ = 0.5825	M1 M1 A1 3	For one product For sum of 3 prods
(iii)	P(property terraced or rented) = P(terraced) + P(rented) - P(terraced and rented) = $0.35 + (1 - 0.5825) - 0.35 \times 0.50$ = 0.5925 or $0.45 \times 0.25 + 0.35 + 0.20 \times 0.65 = 0.5925$	M1 M1 A1 A1 or M1 A1 M1 A1 4	For "addition law" for terms <i>or</i> For 2 products For sum
(iv)	$P(\text{property terraced owned})$ $= \frac{P(\text{property terraced and owned})}{P(\text{property owned})}$ $= \frac{0.35 \times 0.5}{0.5825} = 0.30 (2 \text{ s.f.})$	M1 M1 A1 3	For numerator For quotient
(v)	P(each is the same type of property) = $0.45^2 + 0.35^2 + 0.20^2$ = 0.365	M1 M1 A1	For " p^2 " For sum of 3 squares
	P(each is a different type of property) = 1 - 0.365 = 0.635	M1 A1	For "1 – their 0.365"
	$[or \ 2 \times 0.45 \times 0.35 + \ 2 \times 0.45 \times 0.20 + 2 \times 0.35 \times 0.20 \\ = \ 0.635]$	5	

				My and
				N. M. M. M.
8	(i)	[Let $X \sim B(10, 0.75)$]		laths .
U	(1)	P(Phil wins a prize) =		Cloud
		P(X > 9) = 1 - P(X < 8) = 1 - 0.7560	M1	For use of tables
		$[ar = 10 \times 0.75^9 \times 0.25 + 0.75^{10}]$		
		= 0.1877 + 0.0563]	A1	
		$P(X \ge 9) = 0.244$ (to 3 s.f.)	2	
	(ii)(A)	[Let $Y \sim B(3, 0.244)$]	M1	For " 0.244×0.756^2 "
		$P(Y=1) = 3 \times 0.244 \times 0.756^2$	M1	For " $3 \times p \times q^2$ "
		= 0.418 (3 s.f.)	3	
	(ii)(B)	$P(Y \ge 1) = 1 - P(Y=0) = 1 - 0.756^3$	M1	For "0.756 ³ "
		= 0.568 (3 s.f.)	M1	For " $1 - p^{3}$ "
			AI 3	
	(iii)	[Let <i>n</i> represent the number of goes, then]	M1	For " $1 - 0.756^3$ "
		Require $1 - 0.756^n > 0.9 \implies 0.756^n < 0.10$	M1	For inequality
		By trial: $1 - 0.756^8 = 0.893 < 0.90$		
		$1 - 0.756^{\circ} = 0.919 > 0.90$	M1	For attempt at solving
		or by logs: $n \log(0.756) < \log(0.10)$		inequality
		\Rightarrow $n > \frac{\log(0.10)}{\log(0.756)} = 8.23$		
			A1	
		hence Phil heeds to have 9 goes.	4	
	(IV)	$H_0: p = 0.5$	BI	For null hypothesis
		$H_1: p > 0.5$	BI	For alternative hypothesis
		since we want to see if val is more likely to hit the target than not.	E1 3	For reason
	(v)	Using binomial tables for $n = 10$:	M1	For one comparison
		$P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.8281$ = 0.1719 > 0.10	M1	For 2 nd comparison
		$P(X \ge 8) = 1 - P(X \le 7) = 1 - 0.9453$ = 0.0547 < 0.10		
		So Val should hit the target at least 8 times.	A1 3	

Total = 36